Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available November 26, 2025
-
Deep neural networks (DNNs) have been widely deployed in real-world, mission-critical applications, necessitating effective approaches to protect deep learning models against malicious attacks. Motivated by the high stealthiness and potential harm of backdoor attacks, a series of backdoor defense methods for DNNs have been proposed. However, most existing approaches require access to clean training data, hindering their practical use. Additionally, state-of-the-art (SOTA) solutions cannot simultaneously enhance model robustness and compactness in a data-free manner, which is crucial in resource-constrained applications. To address these challenges, in this paper, we propose Clean & Compact (C&C), an efficient data-free backdoor defense mechanism that can bring both purification and compactness to the original infected DNNs. Built upon the intriguing rank-level sensitivity to trigger patterns, C&C co-explores and achieves high model cleanliness and efficiency without the need for training data, making this solution very attractive in many real-world, resource-limited scenarios. Extensive evaluations across different settings consistently demonstrate that our proposed approach outperforms SOTA backdoor defense methods.more » « less
-
Channel decoders are key computing modules in wired/wireless communication systems. Recently neural network (NN)-based decoders have shown their promising error-correcting performance because of their end-to-end learning capability. However, compared with the traditional approaches, the emerging neural belief propagation (NBP) solution suffers higher storage and computational complexity, limiting its hardware performance. To address this challenge and develop a channel decoder that can achieve high decoding performance and hardware performance simultaneously, in this paper we take a first step towards exploring SRAM-based in-memory computing for efficient NBP channel decoding. We first analyze the unique sparsity pattern in the NBP processing, and then propose an efficient and fully Digital Sparse In-Memory Matrix vector Multiplier (DSPIMM) computing platform. Extensive experiments demonstrate that our proposed DSPIMM achieves significantly higher energy efficiency and throughput than the state-of-the-art counterparts.more » « less
An official website of the United States government

Full Text Available